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Estrogen receptor (ER) functions as a transcription
factor to induce gene expression events sufficient
for cell division and breast cancer progression. A
significant body of work exists on the identification
of ER gene targets and the cofactors that contrib-
ute to these transcription events, yet surprisingly
little is known of the cis-regulatory elements in-
volved. In this review, we investigate the advances
in technology that contribute to a comprehensive
understanding of ER target genes and explore re-
cent work identifying cis-regulatory domains that
augment transcription of these targets. Specifi-

cally, we find that ER association with gene targets
results from an association with the pioneer factor
FoxA1, responsible for recruitment of ER to the
genome. Recruitment of ER to the genome does
not occur at promoter proximal regions, but in-
stead involves distal enhancer elements that func-
tion to tether the ER complex to the target gene
promoters. These advances in technology permit a
more detailed investigation of ER activity and may
aid in the development of superior drug interven-
tions. (Molecular Endocrinology 20: 1707–1714,
2006)

THE IDENTIFICATION OF the estrogen receptor
(ER) by Jensen in 1960 (1) shifted the paradigm of

steroid hormone action from an enzymatic one to a
model whereby steroids diffuse into cells and interact
with a specific receptor to elicit defined biological
responses. Pioneering work by O’Malley et al. (2) dem-
onstrated that ER functions primarily as a transcription
factor to regulate gene expression at the mRNA level.
The cloning of ER� (3, 4) allowed the definition of
specific functional domains within the receptor includ-
ing separable DNA binding, ligand binding, and trans-
activation domains, and cemented its characterization
as a ligand-dependent transcription factor. In addition,
the cloning of the receptor and the availability of var-
ious classes of ligands including selective ER modu-
lators such as tamoxifen led to the conclusion that ER
regulates gene expression in a cell type, promoter, and
ligand-specific fashion.

The more recent identification of a second ER pro-
tein (ER�) (5, 6) raised the possibility of ER subtype
and cell-specific gene targets and models of action
that involved cooperation between the two ER pro-
teins as well as potential competition have been pro-

posed. The presence and role of ER� in the mammary
gland remains controversial where the antiproliferative
effects of the selective ER modulator, tamoxifen, in
breast cancer patients relies primarily on the presence
and function of ER�. Therefore, ER� independently
appears to possess important transcriptional activity
in breast cancer cells where the most advanced anal-
yses have been performed, and thus this review will
focus on ER�.

IDENTIFICATION OF ESTROGEN-RESPONSIVE
ELEMENTS (ERE)

Early work on the Xenopus vitellogenin gene identified
a minimal ERE core sequence: GGTCANNNTGACC
(Ref. 7; reviewed in Ref. 8). This ERE sequence was
shown to function in an orientation and distance-inde-
pendent manner, both of which are properties of an
enhancer (8). Controversy still exists concerning ER
DNA binding via ERE half sites, although a number of
examples exist (9–12). Since the identification of a
canonical ERE, several computational approaches
have been undertaken to identify target genes based
on the presence of EREs within promoter proximal
regions (13, 14). In one of the most comprehensive
studies, Bourdeau and co-workers screened for all
EREs in the human and mouse genomes and identified
in excess of 70,000 EREs within the human genome,
over 17,000 of which were within 15 kb of mRNA start
sites. Elimination of EREs that were not conserved
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between the human and mouse genomes reduced the
number of gene proximal EREs to 660. A number of
these sites were validated as genuine ER interaction
sites, supporting to some degree the use of compu-
tational models to predict putative ER target genes.

CLONING OF ESTROGEN TARGET GENES

A small number of estrogen target genes such as
ovalbumin have been known from the earliest recog-
nition of the function of ER as a transcription factor. A
second wave of target gene identification involved the
use of differential cloning techniques. The cloning of
cDNAs induced by estrogen in breast cancer cells led
to the identification of a number of gene targets in-
cluding TFF-1/pS2 (15, 16), a gene expressed primar-
ily in gastric mucosa and breast epithelia; cathepsin D,
a lysosomal proteinase (17), and more recently,
EBAG9 (18), a gene of unknown function with similarity
to a surface antigen gene called RCAS1 (19). The
identification of c-Myc (20, 21) and cyclin D1 (22) as
estrogen targets provided direct evidence that ER
could induce specific gene events that on their own
were sufficient to cause cell cycle progression and cell
division (23). The subsequent cloning of the approxi-
mately 1-kb promoter proximal regions of a number of
these target genes into reporter vectors and mutagen-
esis of various DNA binding elements within the pro-
moter regions led to the hypothesis that nonclassical
mechanisms of ER transcription exist that do not in-
volve canonical EREs. Instead, ER-mediated tran-
scription in reporter assays involved other transcrip-
tional elements such as AP-1, NF-�B, cAMP-like
elements, and Sp-1 DNA binding motifs (24–26). As
such, two independent mechanisms for ER-mediated
gene activation exist, namely direct ER-mediated tran-
scription via EREs and indirect or nonclassical mech-
anisms via other DNA binding elements and potentially
involving other transcription factors. These methods
required a gene-by-gene approach and focused pri-
marily on proximal promoter regions that were thought
to be the mediators of transcriptional regulation.

Other proposed mechanisms of estrogen-regulated
transcription involve either an indirect nongenomic
function of ER or the action of other membrane-bound
nonnuclear receptor family receptors for estrogen. In
one model, cytoplasmic or membrane-bound ER can
initiate rapid signaling events that ultimately lead to
changes in estrogen-regulated target genes. In sup-
port of this model are the reported interactions of ER�
with a number of signaling proteins including Src, Shc,
ras, PI3-kinase, and G proteins (27–31). Recently,
however, work has suggested that estrogen can func-
tion through the G protein-coupled receptor, GPR30
(32–34). These studies suggest that signaling through
GPR30 may play a role in the cellular response to
estrogen. Further studies are needed to determine the
relative contribution of either or both of these path-
ways to estrogen signaling.

SIMULTANEOUS IDENTIFICATION OF MULTIPLE
ESTROGEN TARGETS

The use of differential sequence display proved to be
an informative technique to identify multiple ligand-
specific gene targets simultaneously within a cell line,
or for the comparison of differentially regulated genes
between different cell lines or tumors. A novel estro-
gen-regulated gene with similarities to the human
megakaryocyte CD63 antigen mRNA was identified in
MCF-7 cells (35), which was subsequently validated as
an estrogen-modulated gene in T-47D cells. Also, a
homolog of the Na� H� exchange regulatory factor
(NHE-RF) was found to be an estrogen-regulated gene
in breast cancer cell lines (36). NHE-RF functions to
regulate protein kinase A activity and therefore likely
contributes to estrogen-mediated signal transduction
modulation. The ICERE-1 gene was found to be un-
derrepresented in two ER-positive breast cancer cell
lines by differential display (37), which was subse-
quently confirmed in a larger panel of cell lines. The
ICERE-1 gene product was shown to lack similarities
to any known proteins but was later shown to partially
rescue the drug-resistant phenotype in a melanoma
cell line (38), supporting a role for growth control of
tumor cells. The XBP-1 transcription factor was one of
a number of novel estrogen-regulated genes identified
in a separate investigation (39). Interestingly, XBP-1 is
known to augment ER-mediated transcription itself,
thereby initiating a feedforward pathway (40). A larger
study employing differential display identified 127 cDNAs
with specific expression in either ER�/PR� or ER�/PR�

tumors, after which eight were shown to be novel tran-
scripts with no similarity to characterized genes (41).

Suppressive subtractive hybridization was also used
to identify estrogen-regulated genes in MCF-7 cells. All
of these were shown to be negatively regulated by the
antiestrogen tamoxifen (42) supporting their identity as
direct ER-regulated targets. Within this list was GREB1,
which has not yet been assigned a function due to the
lack of homology to any known proteins, but was sub-
sequently shown to be a direct ER binding target (43). An
independent investigation by Yang et al. (44) revealed a
total of 10 differentially expressed transcripts when com-
paring ER-negative and -positive cell lines, which in-
cluded a number of known genes including GATA-3, as
well as several uncharacterized expressed sequence
tags. A similar approach was used to identify 29 cDNAs
that were differentially expressed between ER-positive
and -negative cell lines (45), including a number of pre-
viously identified estrogen targets as well as the Cdk
inhibitor p21Waf1/Cip1, a gene directly implicated in reg-
ulating cell cycle progression (46).

EXPRESSION MICROARRAY EXPERIMENTS

The advent of expression microarrays afforded the
ability to investigate global gene changes after ligand
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treatment. A significant number of studies have been
published detailing microarray-based gene changes
after nuclear receptor activation, although we will only
focus on a handful of studies as examples of the
technique. The use of cDNA arrays led to identification
of GATA3 as an estrogen-regulated gene target in
MCF-7 and T-47D breast cancer cell lines (47), con-
firming previous data from differential display experi-
ments. Oligonucleotide microarrays have been used in
combination with RNA from ZR75–1 cell lines to iden-
tify a number of previously identified estrogen targets
including pS2/TFF-1, Cathepsin D, RIP140/NRIP-1,
and c-myb (48), although a significant number of new
targets were identified, including E16, a cationic amino
acid transporter. Katzenellenbogen and co-workers
(49) conducted a detailed set of microarrays experi-
ments over a time course of estrogen treatment. Of the
genes regulated, the highest proportion of estrogen-
induced genes were those involved in transcriptional
regulation and cell proliferation. An interesting conclu-
sion was that approximately 70% of the changes after
estrogen treatment were down-regulated genes, in-
cluding a number of proapoptotic genes (49), fitting
with a model of estrogen-induced cell survival. The
mechanism of negative regulation by estrogen was not
revealed by these studies and did not distinguish be-
tween direct transcriptional inhibition, physiologic
squelching by sequestration of limiting factors away
from these genes, or induction of inhibitory factors. It
is possible that all of these mechanisms may play a
role.

SERIAL ANALYSIS OF GENE EXPRESSION
(SAGE)

SAGE libraries to identify differentially regulated genes
on a scale comparable to microarray analysis, has also
been used. These studies have illuminated the role of
WISP-2 as a differentially regulated estrogen gene, as
well as validation of previously identified ER targets
(50). However, these few genes were the fruits of more
than 30,000 sequencing reactions in both nontreated
and estrogen-treated MCF-7 cells. In support of this
study, work from Polyak and co-workers (51) used a
similar approach to also validate known estrogen tar-
gets as transcripts increased by estrogen treatment of
ZR75–1 cells. A number of the other targets identified
included the pro-proliferative gene cyclin D1, the an-
tiapoptotic factor TIT-5, and EIT-6. Interestingly, EIT-6
was estrogen induced in more than one breast cancer
cell line and was shown to promote colony growth in
vitro, supporting its role as a mediator of cell division.
A total of 61 tags were observed to change after
estrogen treatment, including 22 that were down-reg-
ulated. However, approximately 45,000 sequencing
events from each library (untreated and estrogen
treated) were required to identify these 61 tags, high-
lighting the large-scale sequencing required to ade-

quately cover transcript changes on a genome-wide
scale.

CHROMATIN IMMUNOPRECIPITATION (ChIP)
ANALYSIS OF TARGET SITES

The application of ChIP to clarify protein-DNA binding
dynamics has provided significant information about
the order of protein association with endogenous pro-
moter regions. Previous work from our laboratory and
others used ChIP to map protein recruitment to the
promoters of TFF-1 and Cathepsin D. A cyclic pattern
of ER association was observed on these promoter
regions, with maximal recruitment at 45 min after es-
trogen stimulation. A number of additional proteins
subsequently associate with the promoter regions in-
cluding p300, p160 cofactors, CBP, pCAF, CARM1,
and RNA PolII, all of which then cycle off the promoter
(52–54). Coincident changes in histone acetylation oc-
cur to promote a localized euchromatic environment
permissive for transcription. Subsequent rounds of
transcription involve a majority of the same proteins,
although some differences in protein usage exist. In
contrast to the cycling kinetics observed by ChIP, the
use of fluorescence recovery after photobleaching to
assess the rate of ER association and dissociation
from DNA suggests a model of mobility that is mea-
sured in seconds rather than almost an hour (55).
However, the use of fluorescence recovery after pho-
tobleaching does not distinguish the bulk of ER protein
from the ER that is associated with gene targets in
chromatin and, therefore, may not accurately repre-
sent the mobility of transcriptionally functional ER
complexes. That said, however, the two models of ER
kinetics are not necessarily mutually exclusive. It is
possible that ER cycles on and off of chromatin with
two kinetic profiles, namely a rapid one that is mea-
sured in seconds and an average of the longer
changes in ER-chromatin association that can be
measured in minutes to hours.

ChIP-BASED METHODS

A more recent approach to identify ER binding sites to
define new target genes as well as cis-regulatory re-
gions, used ChIP combined with sequencing. Work by
Laganiere et al. (56, 57) using ChIP-cloning identified
DNA sequences associated with ER under in vivo con-
ditions, by sequencing cloned DNA fragments that
coprecipitate with ER after estrogen stimulation of cell
lines. The benefit of this method is that it allows for
identification of cis-regulatory regions without bias to-
ward promoter regions or known gene targets. This
method has successfully been applied to identify the
known target, TFF-1, as well as 11 other targets, in-
cluding RARA (57). Most of these new ER binding sites
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were shown to be bona fide ER binding sites as well as
interacting domains for the cofactors, SRC-1 and
SRC-3, validating the technique as a method for iden-
tifying previously undocumented ER-chromatin inter-
action sites. However, similar to SAGE-based ap-
proaches, large-scale sequencing is essential and all
sequences identified need to be validated by directed
ChIP and PCR because the presence of enriched DNA
sequences are embedded within large amounts of
background DNA that will also be precipitated.

A ChIP-SAGE approach was recently published
where ChIP of the nuclear receptor coactivator, SRC-3
after estrogen treatment was used to purify pieces of
associating chromatin, which were subsequently an-
alyzed by SAGE-based approaches (58). Approxi-
mately 7000 tags were sequenced, almost half of
which corresponded to repetitive DNA and could not
be assigned unique loci. The remaining tags were
grouped into regions of DNA containing multiple 21-bp
tags, as would be expected based on the average 0.5-
to 1-kb size of DNA fragments produced by the ChIP
protocol. However, only 70 sites met the criteria of
possessing multiple tags, suggesting that either
SRC-3 associates with limited regions of the genome,
or more likely, that the sequencing did not adequately
cover enough tags to accurately represent all binding
sites.

ChIP-CHIP

More recently, ChIP-microarray (ChIP-chip) ap-
proaches have been undertaken to identify ER binding
sites in an unbiased manner. ER ChIP of MCF-7 cells
followed by hybridization of associated chromatin to
microarrays that contain probes representing approx-
imately 9000 GC-rich regions, identified 70 putative
ER binding sites. GC-rich regions are known to be
biased toward the transcriptional start sites of genes
(59) and therefore the microarrays likely overrepresent
promoter sequences. Within the list of 70 putative
sites, a number of enriched DNA binding motifs were
identified including ERE half sites and Sp-1 sites.

Recent work from our laboratory used a ChIP-chip
approach to identify ER binding sites on a chromo-
some-wide scale, using ChIP in combination with mi-
croarrays that cover the entire nonrepetitive sequence
of chromosomes 21 and 22 at 35-bp resolution (60). In
this study, we identified 57 ER binding sites across the
35 million bp represented on the microarrays, almost
all of which were not in promoter proximal regions, but
instead existed up to 150 kb from putative gene tar-
gets. These binding sites represent a small fraction of
predicted EREs, confirming that the presence of an
ERE within DNA is insufficient to determine an ER
binding site. We further showed that the ER binding
sites function as binding sites for RNA PolII and the
p160 cofactor, AIB1, in an estrogen-dependent man-
ner. Although RNA PolII is found associated with the

distal ER binding sites, it has been difficult to deter-
mine whether these are direct RNA PolII binding sites,
or whether RNA PolII is tethered to these regions via a
protein complex that involves promoter sequences, or
both. However, in at least two tested examples, we
could show that the distal enhancer and the promoter
of target genes physically interact upon estrogen ad-
dition, confirming that the distal cis-regulatory regions
function by bringing the proteins at the enhancers in
contact with the promoter. Much work has focused on
elucidating the mechanisms by which proteins at en-
hancers interact with and regulate promoter se-
quences in other biological systems (reviewed in Refs.
61 and 62). The capturing of enhancer-promoter inter-
actions in our system suggests a looping model
whereby intervening chromatin is looped out as the
proteins at the enhancer interact with the promoters to
initiate transcription. Recent work in our laboratory has
focused on androgen receptor regulation of the pro-
moter and enhancer (�4 kb upstream) of the PSA
target gene. Cloning of the entire enhancer-promoter
region into a vector and the introduction of an insulator
in between these domains inhibits transcription of a
reporter gene (63). This suggests that proteins track
from the enhancer to the promoter and that looping
between the enhancer and the promoter is not the sole
method of communication between the proteins at the
enhancer and the promoter region. It is likely that a
combination of these mechanisms exists such that
chromatin looping can facilitate interaction of the pro-
teins at the enhancers within the promoter proximal
region after which RNA PolII tracking occurs on a more
localized level to correctly position the transcription
machinery at the transcription start site. However, it is
possible that the proteins at the enhancer function
only to modulate the chromatin structure and nucleo-
some positions at the promoter region and to promote
a transcriptionally permissive state. This is supported
by work on the HNF4-� enhancer and promoter re-
gion, where the proteins at the enhancer function pri-
marily to modify acetylation at the promoter and do not
appear to transfer proteins from the enhancer to the
gene proximal region (64).

Using the 57 ER binding sites from our ChIP-chip
data, a search for enriched motifs identified two mo-
tifs, namely an ERE and a Forkhead motif. Previous
work has identified a role for the Forkhead protein,
FoxA1/HNF-3�, in glucocorticoid receptor- and an-
drogen receptor-mediated transcription (65, 66).
Moreover, a correlation between FoxA1 and ER ex-
pression has been previously documented in breast
cancer cell lines (67). We identified common recruit-
ment of FoxA1 to almost half of the ER binding sites in
chromosomes 21 and 22, although unlike ER, FoxA1
generally was associated with chromatin in the ab-
sence of estrogen and dissociated from the DNA after
estrogen addition. FoxA1 is known to bind to con-
densed heterochromatin via its winged helix DNA
binding domains and can mimic histone H1 and H5
proteins, thereby functioning as a pioneer factor to
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facilitate subsequent protein binding events, including
ER binding (68, 69). Coupled with this, FoxA1 has been
shown to induce localized chromatin remodeling on its
own, suggesting that it not only promotes association
of other proteins but also can independently enhance
euchromatic conditions. The specific targeted silenc-
ing of FoxA1 in breast cancer cells inhibited ER asso-
ciation with the chromatin and abrogated estrogen-
mediated transcription on a chromosome-wide level
(60), supporting a model whereby FoxA1 is often es-
sential for ER association with cis-regulatory regions.
A subsequent ER ChIP-chip publication has confirmed
the finding of a requirement for FoxA1 during ER-
mediated transcription (70). However, this study fo-
cused primarily on promoter regions of approximately

18,000 genes, but still identified an enrichment of
EREs within the bound promoter regions.

Although all the ChIP-chip experiments to date fo-
cus on one specific cell line of interest, two pieces of
evidence suggest that the ER binding sites we identi-
fied in MCF-7 cells play a broader biological role. The
first is that directed ChIP of ER in another breast
cancer cell line (T47D cells) followed by PCR of a
number of newly identified sites confirmed a very high
degree of concordance in ligand-induced ER binding
sites. Second, there is a significant degree of se-
quence conservation at the ER binding sites between
the human and mouse genomes, with very little se-
quence identity in the immediate surrounding se-
quence, suggesting evolutionary conservation at

Fig. 1. A Revised Model of ER-Mediated Transcription
In breast cancer cells, the Forkhead protein, FoxA1, interacts with cis-regulatory regions in heterochromatin and in combination

with adjacent DNA binding elements, such as EREs, facilitates the interaction of ER with chromatin. Subsequent to ER
association, recruitment of p160 cofactors, other chromatin remodeling proteins and RNA PolII occur at these distal enhancer
sites. Histone modification occurs to promote a permissive chromatin environment. In a number of tested cases, the distal
transcription machinery can interact with the promoters of target genes to initiate gene transcription.
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these discrete binding regions within the chromatin.
However, ER ChIP-chip on a genome-wide scale in
different cell lines is required to identify whether the
binding sites observed in MCF-7 breast cancer cells
are the same binding sites in other cell types, or
whether cell type-specific ER binding sites exist, pos-
sibly as a result of differences in pioneer factors.

NEW MODEL OF AN ER TARGET GENE

Our recent ChIP-chip analysis leads to a revised
model of ER action. This model for ER-mediated tran-
scription (Fig. 1) involves the presence of a pioneer
factor such as FoxA1 on chromatin, that in combina-
tion with adjacent EREs, facilitates ER association with
discrete regions within the genome. These sites are
often in regions far from the transcription start site of
target genes. Binding of ER to these distal enhancers
is followed by the formation of a chromatin loop that
promotes the physical contact between the enhancer
and the proximal promoter. The juxtaposition of the
proteins involved in transcriptional activation with the
promoter allows for the initiation of gene transcription.

CONCLUSIONS

The importance of ER as a target of therapy in breast
cancer has been the stimulus for understanding both
the factors involved in assisting ER in regulating tran-
scription and on identifying the specific gene targets
and the DNA elements responsible for activation or
inhibition. Surprisingly little is known of the actual cis-
regulatory elements involved. The completion of the
human genome sequence and the advent of technol-
ogies such as tiling arrays for the whole human ge-
nome for the first time makes a comprehensive anal-
ysis of the genomic targets of ER action possible. The
full understanding of the trans-acting factors and cis-
regulatory targets of ER action in various estrogen-
responsive cell types will support the development of
improved selective ER modulators useful for the pre-
vention and treatment of breast cancer and other
diseases.
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